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Abstract. For a real vector space V acted on by a group K and fixed x and y in V , we
consider the problem of finding the minimum (resp., maximum) distance, relative to a K-
invariant convex function on V , between x and elements of the convex hull of the K-orbit of
y. We solve this problem in the case where V is a Euclidean space and K is a finite reflection
group acting on V . Then we use this result to obtain an analogous result in the case where
K is a maximal compact subgroup of a reductive group G with adjoint action on the vector
component p of a Cartan decomposition of Lie G. Our results generalize results of Li and Tsing
and of Cheng concerning distances to the convex hulls of matrix orbits.

1. Introduction

In [LT2], Li and Tsing studied the distance to the convex hull of the orbit of a Hermitian

matrix under the conjugacy action of the unitary group. We begin by describing their

results. Let Hn denote the space of n × n Hermitian matrices and let U(n) denote the

group of n × n unitary matrices. Fix B ∈ Hn. Denote by O(B) the orbit of B under

the conjugacy action of U(n), that is, O(B) = {UBU−1 : U ∈ U(n)}, and let C(O(B))

denote the convex hull of this orbit. Let λ(B) = (λ1(B), . . . , λn(B)) be the eigenvalues of

B arranged in nonincreasing order. Li and Tsing showed that, given any unitary similarity

invariant norm || · || : Hn → R (meaning norm that is constant on orbits) and any A ∈ Hn,

one has

max{||A−X|| : X ∈ C(O(B))} = ||diag(λ1(A)− λn(B), . . . , λn(A)− λ1(B))||.

So this gives a formula in terms of eigenvalues for finding the maximum distance (relative

to || · ||) between A ∈ Hn and elements in the convex hull of the orbit of B. Li and Tsing
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also found a formula for the minimum such distance. It involves an algorithm of at most n

iterations starting with λ(A) and λ(B).

Following the lead of Li and Tsing, Cheng studied in [C] the problem of finding extreme

distances to convex hulls of orbits in other matrix settings. Here is one such setting he

considered.

Let Cm×n be the space of m× n-matrices over C. Then there is an action of the group

U(m) × U(n) on Cm×n given by (U, V ) · B = UBV ∗. Denote again by O(B) the orbit of

B ∈ Cm×n under this action. Cheng found formulas similar to those of Li and Tsing for

the extremes of {||A−X|| : X ∈ C(O(B))}, where A,B ∈ Cm×n and || · || is an invariant

norm.

As another example, let Kn(R) denote the space of n×n skew symmetric matrices over R.

Then the group On(R) of real orthogonal matrices acts on Kn(R) by the rule O ·X = OXOt.

Cheng found formulas for the extreme distances (relative to an invariant norm) to elements

in the convex hull of the orbit of a given B ∈ Kn(R), and these formulas again resemble

those for the other cases we have discussed. Additional matrix settings were considered by

Cheng and the findings were all similar.

Looking at the results of Li and Tsing and of Cheng, it is natural to ask whether there

might be a unified approach for studying these problems. The purpose of this paper is to

present such a unified approach.

We begin in §2 by considering a finite reflection group W acting on a Euclidean space E.

Given x, y ∈ E and a W -invariant convex function ϕ : E → R, we compute the extremes of

the set {ϕ(x− z) : z ∈ C(Wy)}. (See 2.13.)

In §3 we turn to the study of a reductive Lie group G, or, more precisely, an element

(G,K, θ, B) of the Harish-Chandra class. The compact Lie group K acts naturally on the

vector space p, where g = k+̇p is the Cartan decomposition of g = LieG corresponding to

θ. We use Kostant’s convexity theorem as well as a classical result of Berezin and Gel’fand

(both of which we extend to the case of a reductive Lie group) to show that, for a K-

invariant convex function ϕ : p → R and for x, y ∈ p, the set {ϕ(x − z) : z ∈ C(Ky)} has

the same extremes as the set {ϕ(x − z) : z ∈ C(Wy)}, where x is the unique element in
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the intersection of the orbit Kx and a certain Euclidean space a ⊆ p (and similarly for y)

and W is a finite reflection group acting on a (W is the Weyl group of the pair (g, a)). The

results of §2 then apply to give these extremes. (See 3.12.)

In §3 we also generalize to the reductive Lie group setting a theorem of Li and Tsing

[LT1] concerning unitary similarity invariant norms on the set of n× n Hermitian matrices

as well as a characterization given by von Neumann [vN] of unitarily invariant norms on

Cm×n. (See 3.8, 4.1, and 4.3.)

Finally, we show in §4 that the results of Li and Tsing and the results of Cheng can

all be recovered from our general results. In particular, we show that an algorithm we

obtain for finding the minimum of the set {ϕ(x−z) : z ∈ C(Ky)} generalizes these authors’

algorithms.

2. Results for Finite Reflection Groups

In this section, we obtain a means for computing the minimum and maximum distances to

the convex hull of an orbit under the the action of a finite reflection group. The main result

(2.13) will be used in the next section to obtain an analog (3.12) pertaining to the convex

hull of an orbit under the action of a compact Lie group. We begin with some definitions

and standard results from the theory of finite reflection groups. (For more details, see [BGr]

or [H2].)

Let E be a (real) finite dimensional Euclidean space with associated inner product (·, ·).
Given a nonzero element α of E, denote by sα : E → E the reflection in the hyperplane

orthogonal to α: sα(x) = x− 〈x, α〉α, where 〈x, α〉 := 2(x, α)/(α, α).

Fix a root system Φ ⊆ E. By definition, Φ is a finite set of nonzero vectors such that,

for each α ∈ Φ,

(1) Φ ∩ Rα = {α,−α}, and

(2) sαΦ = Φ.

Associated with Φ is the “finite reflection group” W generated by the reflections sα (α ∈ Φ).

Let E1 denote the R-span of Φ and let E0 denote its orthogonal complement in E. Fix a

simple system ∆ = {α1, . . . , αn} ⊆ Φ. Then ∆ is a basis for E1 such that Φ = Φ+∪̇(−Φ+),
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where Φ+ := {α ∈ Φ : α =
∑

i aiαi with ai ≥ 0}. It is shown that W is generated by {sαi}.
Let λ1, . . . , λn ∈ E be the vectors satisfying 〈λj , αi〉 = δij (Kronecker delta) (so {λi} is

just the basis of E1 dual to the basis {2αi/(αi, αi)} relative to the inner product). The

matrix (〈αi, αj〉) is called the Cartan matrix. It is the change of basis matrix from {λj} to

{αi}: αi =
∑

j〈αi, αj〉λj . The off-diagonal entries of the Cartan matrix are nonpositive,

that is, 〈αi, αj〉 ≤ 0 for i 6= j. Let (dji) denote the inverse of the Cartan matrix.

Set N = {1, . . . , n} and let I ⊆ N . The set ΦI = Φ∩ span{αi : i ∈ I} is a root system in

E with simple system ∆I = {αi : i ∈ I}. Denote the associated finite reflection group by

WI and denote the inverse of the Cartan matrix (〈αi, αj〉)i,j∈I by (dI
ji).

Let L be the collection of all subsets L of N for which there does not exist a nonempty

subset J ( L satisfying (αj , αk) = 0 for all j ∈ J , k ∈ L\J . So L ∈ L if and only if ΦL is

irreducible in the sense of [BGr, p. 56].

A proof of the following result is sketched in [H1, p. 72, Exercises 7 and 8].

2.1 Lemma.

(1) dji ≥ 0 for all i, j ∈ N .

(2) If L ∈ L, then dji > 0 for all i, j ∈ L. ¤

For I ⊆ N set

E−(I) = {x ∈ E1 : (x, λi) = 0 for all i 6∈ I and (x, λi) < 0 for all i ∈ I},

E+(I) = {x ∈ E : (x, αj) = 0 for all j ∈ I and (x, αj) ≥ 0 for all j 6∈ I}.

2.2 Lemma. Let x ∈ E and I ⊆ N .

(1) x ∈ E−(I) if and only if x =
∑

i∈I aiαi with ai < 0.

(2) x ∈ E+(I) if and only if x = x0 +
∑

j 6∈I bjλj with x0 ∈ E0, bj ≥ 0.

(3) (E−(I), E+(I)) = 0.

Proof. Assume x ∈ E1. We will prove the lemma for this special case (with x0 = 0 in (2));

the general case will then follow. Since {αi} and {λj} are both bases for E1, we can write x

in the form
∑

i aiαi = x =
∑

j bjλj (ai, bj ∈ R). Applying (·, λi) yields ai = 2(x, λi)/(αi, αi)

while applying 〈·, αj〉 yields bj = 〈x, αj〉. This proves (1) and (2). Since (λj , αi) = 0 for

i 6= j, (3) now follows from (1) and (2). ¤
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For x ∈ E and I ⊆ N , set

x(I) =
∑

i∈I

cI
i (x)αi,

where

cI
i (x) =

∑

j∈I

dI
ji〈x, αj〉 (i ∈ I).

It follows from2.3(1) below that x(I) is the orthogonal projection of x onto EI = spanΦI ,

and hence cI
i (x) is the ith coordinate of this projection relative to the basis ∆I of EI .

2.3 Lemma. Let x ∈ E and I ⊆ N .

(1) (x− x(I), αi) = 0 for all i ∈ I.

(2) (x(I), λi) =
{

cI
i (x)(αi, αi)/2, i ∈ I

0, i /∈ I.

Proof. (1) Let i ∈ I. From the definitions of x(I) and dI
jk, we obtain

〈x− x(I), αi〉 = 〈x, αi〉 −
∑

j,k∈I

dI
jk〈x, αj〉〈αk, αi〉

= 〈x, αi〉 −
∑

j∈I

〈x, αj〉δij = 0,

whence (x− x(I), αi) = 0.

(2) Let i ∈ N . Applying (·, λi) to the definition of x(I), we get

(x(I), λi) =
∑

j,k∈I

dI
jk〈x, αj〉(αk, λi).

Since (αk, λi) = δik(αk, αk)/2, the claim follows. ¤

Next, we describe an algorithm that will play a key role in the remainder of the paper.

2.4 Algorithm. Let x ∈ E and set x0 = x, I0 = φ. Suppose xk−1 and Ik−1 (k ∈ N) have

been defined. If (xk−1, α`) ≥ 0 for all `, then the algorithm ends. Otherwise, choose Ik ⊆ N

such that Ik ) Ik−1 and

(1) cIk
i (xk−1) ≤ 0 for all i ∈ Ik, and

(2) cIk
i (xk−1) < 0 for all i ∈ Ik\Ik−1.

Then set xk = xk−1 − xk−1(Ik).

We need to show that such an Ik always exists. Assume (xk−1, α`) < 0 for some ` and

set Ik = Ik−1 ∪ {`}. By 2.3(1), (xk−1, αi) = 0 for all i ∈ Ik−1. In particular, ` /∈ Ik−1, so
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that Ik ) Ik−1. We also have

cIk
i (xk−1) =

∑

j∈Ik

dIk
ji 〈xk−1, αj〉 = dIk

`i 〈xk−1, α`〉.

Since dIk

`i ≥ 0 for all i and dIk

`` > 0 (2.1), conditions (1) and (2) of the algorithm are satisfied.

We point out that one can always use the Ik described in the preceding paragraph and

this is perhaps the easiest choice. In the algorithm, we have allowed some flexibility in the

choice of Ik mainly so that we will be able to recover some results in the literature (see §4).

Note that the algorithm terminates in n or fewer steps since I0 ( I1 ( I2 ( · · · ( It ⊆ N .

2.5 Theorem. If x ∈ E, then there exist Ix ⊆ N , x− ∈ E−(Ix), and x+ ∈ E+(Ix) such

that x = x− + x+. Moreover, Ix, x−, and x+ are uniquely determined by x.

Proof. Let x ∈ E. As pointed out, the above algorithm applied to x terminates with, say,

xt. Then (xt, αj) ≥ 0 for all j. Moreover, by 2.3(1), (xt, αj) = 0 for all j ∈ It. Thus

xt ∈ E+(It). For each i, we have

(x− xt, λi) = (
t∑

k=1

(xk−1 − xk), λi) =
t∑

k=1

(xk−1(Ik), λi).

If i 6∈ It, then i 6∈ Ik for each k, whence (x − xt, λi) = 0 by 2.3(2). On the other hand, if

i ∈ It = ∪kIk, then i ∈ Im\Im−1 for some m, so using the equation above and then 2.3(2)

and the choice of the Ik, we get

(x− xt, λi) ≤ (xm−1(Im), λi) < 0.

Also, it is easy to see that xk−1 and xk have the same component in E0 for each k, so

x− xt ∈ E1. Therefore, x− xt ∈ E−(It).

Setting x+ = xt, x− = x − xt and Ix = It, we have x− ∈ E−(Ix), x+ ∈ E+(Ix) and

x = x− + x+, as desired.

To prove uniqueness, suppose we have I, I ′ ⊆ N , x± ∈ E±(I), x±′ ∈ E±(I ′), with

x− + x+ = x = x−′ + x+′. From 2.2 we get

(*)
∑

i∈I

aiαi +
∑

j 6∈I

bjλj =
∑

i∈I′
a′iαi +

∑

j 6∈I′
b′jλj ,
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with ai, a
′
i < 0 and bj , b

′
j ≥ 0 where the four sums are x−, x+ − x0, x−′, and x+′ − x0,

respectively (x0 denoting the component of x in E0).

First assume I ∩ I ′ = φ. Let j ∈ I and apply 〈·, αj〉 to both sides of (*) to get

∑

i∈I

ai〈αi, αj〉 = cj ,

where cj =
∑

i∈I′ a
′
i〈αi, αj〉+ b′j ≥ 0 (since 〈αi, αj〉 ≤ 0, i 6= j). It follows that

ai =
∑

j∈I

dI
jicj ,

for all i ∈ I. By 2.1(1), dI
ji ≥ 0 for each i, j ∈ I, so we get ai ≥ 0 for each i ∈ I, which is a

contradiction unless I = φ. Similarly, we get a contradiction unless I ′ = φ. Thus I ∩ I ′ = φ

implies I = φ and I ′ = φ.

Now return to the general case and set J = {i ∈ I ∩ I ′ : ai < a′i} and J ′ = {i ∈ I ∩ I ′ :

ai > a′i}. By rearranging terms in (*), we obtain

∑

i∈K

eiαi +
∑

j 6∈K

bjλj =
∑

i∈K′
e′iαi +

∑

j 6∈K′
b′jλj ,

where K = (I\I ′) ∪ J , K ′ = (I ′\I) ∪ J ′,

ei =
{

ai, i ∈ I\I ′
ai − a′i, i ∈ J,

e′i =
{

a′i, i ∈ I ′\I
a′i − ai, i ∈ J ′,

and where bj = 0 if j ∈ I, b′j = 0 if j ∈ I ′. The previous paragraph applies to give

K = φ = K ′. This in turn implies I = I ′ and ai = a′i for all i. Hence (*) becomes
∑

j 6∈I bjλj =
∑

j 6∈I′ b
′
jλj . Since the set {λj : j ∈ N} is linearly independent, we have

bj = b′j for all j. Therefore, we have shown that I = I ′, x− = x−′ and x+ = x+′ and have

thus completed the proof of uniqueness. ¤

For future reference, we record the following consequence of the proof of 2.5.

2.6 Corollary. Let x ∈ E and suppose the algorithm in 2.4 applied to x terminates with the

element xt of E. Then x+ = xt, x− = x− xt, and Ix = It. In particular, xt is independent

of the choices made in the algorithm. ¤

Set E+ = E+(φ) = {x ∈ E : (x, αj) ≥ 0 for all j}. By 2.2, x ∈ E+ if and only if

x = x0 +
∑

j bjλj with x0 ∈ E0, bj ≥ 0. According to [H2, p. 22], E+ is a fundamental
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domain for the action of W on E, that is, for each x ∈ E, the orbit Wx intersects E+ in

precisely one point, which we denote by x.

We obtain a partial order on E by putting x ≺ y if (y−x, λj) ≥ 0 for all j, or, equivalently,

y − x =
∑

i aiαi with ai ≥ 0. For the proof of the following lemma, see [H2, p. 22 ].

2.7 Lemma. If x ∈ E, then x ≺ x. ¤

For the next lemma, we need a few notions, which we state here in sufficient generality

to be applicable in the next section as well. Let V be a real vector space. A subset C of

V is convex if tx + (1 − t)y ∈ C for all x, y ∈ C, 0 ≤ t ≤ 1. If X ⊆ V , then the convex

hull C(X) of X is the intersection of all convex subsets of V containing X. It is easily seen

that, if X is finite, then C(X) = {∑x∈X axx :
∑

ax = 1}. A function ϕ : V → R is convex

if ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y) for all x, y ∈ V , 0 ≤ t ≤ 1. If V is acted on by a

group G, then a function ϕ : V → R is G-invariant if ϕ(gx) = ϕ(x) for all g ∈ G, x ∈ V .

2.8 Proposition. Let x, y ∈ E. The following are equivalent:

(1) x̄ ≺ ȳ,

(2) ϕ(x) ≤ ϕ(y) for every W -invariant convex function ϕ : E → R,

(3) x ∈ C(Wy).

Proof. The equivalence of (1) and (3) is proved in [Ko, Lemma 3.3] in the case Φ is a set of

“restricted” roots; the proof carries over to this setting. (2) and (3) are equivalent by [AB,

p. 599]. ¤

Given x, y ∈ E, define yx = x− (x− y)+ and note that yx = y + (x− y)− as well, since

x − y = (x− y)− + (x − y)+. Here, the superscripts + and − refer to the notation in 2.5.

In view of 2.6, the algorithm in 2.4 can be used to compute yx.

2.9 Proposition. If x, y ∈ E+, then yx is the unique element of E satisfying

(1) yx ∈ C(Wy) ∩ E+,

(2) x− yx ∈ E+, and

(3) (x− yx, yx − y) = 0.

Proof. Let x, y ∈ E+. First we show that yx satisfies the three properties.
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(1) If j ∈ I := Ix−y, then (yx, αj) = (x, αj)− ((x− y)+, αj) = (x, αj) ≥ 0 since x ∈ E+

and (x − y)+ ∈ E+(I). Similarly, if j 6∈ I, then (yx, αj) = (y, αj) + ((x − y)−, αj) =

(y, αj) +
∑

i∈I((x − y)−, λi)〈αj , αi〉 ≥ 0 where we have used that αj =
∑

i〈αj , αi〉λi,

(x − y)− ∈ E−(I), y ∈ E+ and 〈αj , αi〉 ≤ 0 for i ∈ I. Therefore, (yx, αj) ≥ 0 for all j

implying yx ∈ E+.

For any i we have (yx− y, λi) = ((x− y)−, λi) ≤ 0 since (x− y)− ∈ E−(I). Thus yx ≺ y.

From 2.8 and the previous paragraph, we conclude that yx ∈ C(Wy).

(2) We have x− yx = (x− y)+ ∈ E+(I) ⊆ E+.

(3) We have (x− yx, yx − y) = ((x− y))+, (x− y)−) = 0 by 2.2 (3).

Now assume z ∈ E satisfies the three properties (with z in place of yx). Since z ∈
C(Wy) ∩ E+, 2.8 implies z ≺ y. Therefore, z − y =

∑
i∈I aiαi for some I ⊆ N and ai < 0,

which is to say z − y ∈ E−(I) (2.2 (1)). Since x− z ∈ E+, we have x− z = u0 +
∑

j bjλj

with u0 ∈ E0, bj ≥ 0. Now

1
2

∑

i∈I

aibi(αi, αi) =
∑

i∈I,j∈N

aibi(λj , αi) = (x− z, z − y) = 0,

where we have used that (λj , αi) = 〈λj , αi〉(αi, αi)/2 = δij(αi, αi)/2. Since (αi, αi) > 0 for

each i, we conclude that bj = 0 for all j ∈ I. This says that x−z ∈ E+(I) (2.2 (2)). Finally

x − y = (z − y) + (x − z) so the uniqueness part of 2.5 says x − z = (x − y)+, implying

z = x− (x− y)+ = yx. ¤

2.10 Lemma. If x ∈ E, then x+ ∈ C(Wx).

Proof. First, we observe that x0 ∈ C(Wx) for any x ∈ E, where x0 is the component of x

in E0. To see this, let x ∈ E. Then x ∈ E+, implying x = x0 +
∑

j bjλj = x0 +
∑

i,j bjdjiαi,

with bj ≥ 0 (2.2(2)). Since dji ≥ 0 (2.1(1)), we have x Â x0 = x0. Therefore, 2.8 gives

x0 ∈ C(Wx).

Now to prove the lemma, let x ∈ E. If j ∈ I := Ix (notation as in 2.5), then (x+, αj) = 0

(since x+ ∈ E+(I)), so sαj (x
+) = x+ − 〈x+, αj〉αj = x+. It follows that WI fixes x+.

Therefore, x+ = 0 + x+ = (x−)0 + x+ ∈ C(WIx
−) + x+ = C(WIx

− + x+) = C(WI(x− +

x+)) ⊆ C(Wx). (Here, (x−)0 is the component of x− in the orthogonal complement in E

of the span of ΦI , so the previous paragraph applies to give (x−)0 ∈ C(WIx
−).) ¤
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2.11 Lemma. Let x, y ∈ E and assume x ≺ y.

(1) If y ∈ E+ and I ⊆ N , then x− x(I) ≺ y.

(2) x+ ≺ y+.

Proof. (1) Assume y ∈ E+ and let i ∈ I ⊆ N . From 2.3(2), we have

(x(I), λi) = ci

∑

k∈I

dI
ki〈x, αk〉,

where ci = (αi, αi)/2. We can write x − y in the form x − y =
∑

j ejαj and we find that

ej = (x− y, λj)/cj ≤ 0 by applying (·, λj) to both sides. Since y ∈ E+ and dI
ki ≥ 0 (2.1(1)),

we get

(x(I), λi) ≥ ci

∑

k∈I

dI
ki〈x, αk〉 − ci

∑

k∈I

dI
ki〈y, αk〉

= ci

∑

k∈I

dI
ki〈x− y, αk〉 = ci

∑

k∈I
j∈N

ejd
I
ki〈αj , αk〉

≥ ci

∑

j,k∈I

ejd
I
ki〈αj , αk〉 = ci

∑

j∈I

ejδij = (x− y, λi),

where the second inequality is due to the fact that 〈αj , αk〉 ≤ 0 for j 6= k. Hence, (x(I), λi) ≥
(x − y, λi) for each i ∈ I. On the other hand, if i 6∈ I, then (x(I), λi) = 0 by 2.3(2). We

conclude that

(x− x(I)− y, λi) = (x− y, λi)− (x(I), λi) ≤ 0,

for each i, which says that x− x(I) ≺ y.

(2) Since y− ∈ E−(Iy), we have (y − y+, λi) = (y−, λi) ≤ 0 for each i. Hence y ≺ y+,

implying x ≺ y+ as well. Using the notation of the algorithm 2.4, we get from (1) that

xk ≺ y+ for each k. By 2.6, x+ equals the terminal vector xt produced by the algorithm

applied to x. Hence, x+ ≺ y+, as desired. ¤

On W is defined a length function (relative to ∆). There is a unique element of maximal

length, which we denote by w0 (called the longest element of W ) [H2, §1.8].

2.12 Lemma. If x, y ∈ E+ and z ∈ C(Wy), then x − yx ≺ x− z ≺ x − w0y and w0y =

−(−y).
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Proof. Let x, y ∈ E+ and z ∈ C(Wy). By 2.8 and 2.7, we have z ≺ y, implying x − y ≺
x − z. Using 2.11(2), we get x − yx = (x − y)+ ≺ (x − z)+ = x − zx. But 2.10 implies

x− zx = (x− z)+ ∈ C(W (x− z)), so that x− yx ≺ x− zx ≺ x− zx ≺ x− z by 2.7 and 2.8.

For the other inequality, we first remark that a + b ≺ a + b for every a, b ∈ E. Indeed, if

a, b ∈ E, then there exists w ∈ W with w(a + b) = a + b, so that a + b = wa + wb ≺ a + b

( 2.7). Next, since z ∈ C(Wy), we have −z ∈ C(W (−y)). Thus, −z ≺ −y by 2.8.

Putting this together with the remark above, we get x− z ≺ x + −z ≺ x + −y. Now

−y ∈ W (−y), implying −(−y) ∈ Wy ∩ −E+. Since W acts simply transitively on the

Weyl chambers and w0E
+ = −E+ [H2, §1.8], we conclude that −(−y) = w0y. Hence,

x− z ≺ x +−y = x− w0y. ¤

Before stating the main result of the section, we remind the reader that, given x, y ∈ E,

the algorithm in 2.4 can be used to compute the element yx of E (in at most n = |∆|
steps). More precisely, the algorithm applied to x − y terminates with the element x − yx

(see remarks before 2.9).

2.13 Theorem. Let x, y ∈ E, write x = wx with w ∈ W , and let ϕ : E → R be a convex

W -invariant function.

(1) The set {ϕ(x− z) : z ∈ C(Wy)} has minimum ϕ(x− yx); this minimum is attained

when z = wyx.

(2) The set {ϕ(x−z) : z ∈ C(Wy)} has maximum ϕ(x−w0y); this maximum is attained

when z = ww0y.

Proof. From the W -invariance of ϕ and the W -stability of C(Wy) we get {ϕ(x − z) : z ∈
C(Wy)} = {ϕ(x − z) : z ∈ C(Wy)}, so we may assume x, y ∈ E+ (so that x = x, y = y,

and w = 1). By 2.9, x − yx ∈ E+, and by 2.12, x − w0y = x + −y ∈ E+, so 2.8 and 2.12

give ϕ(x − yx) ≤ ϕ(x − z) ≤ ϕ(x − w0y) for every z ∈ C(Wy). Since yx ∈ C(Wy) by 2.9,

and obviously w0y ∈ C(Wy), the result now follows. ¤

In general, the minimum of {ϕ(x − z) : z ∈ C(Wy)} can be attained at more than one

z ∈ C(Wy) and this is true for the maximum as well. However, by slightly strengthening

the assumptions on ϕ we can obtain uniqueness in the case of the minimum. Let V be
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a real vector space. A convex function ϕ : V → R is strictly convex if ϕ((x + y)/2) <

(ϕ(x) + ϕ(y))/2 for all x, y ∈ V with ϕ(x) = ϕ(y) and x 6= y.

2.14 Corollary. Let x, y ∈ E and write x = wx with w ∈ W . If ϕ : E → R is a strictly

convex W -invariant function, then wyx is the unique element of C(Wy) for which

ϕ(x− wyx) = min{ϕ(x− z) : z ∈ C(Wy)}.

In particular, wyx is the unique element of C(Wy) for which the above equation holds for

every convex W -invariant function ϕ : E → R.

Proof. Let ϕ : E → R be a strictly convex W -invariant function. Assume ϕ attains a

minimum at both a and b in the convex set A := x−C(Wy). Using the fact that (a+b)/2 ∈ A

and then the convexity of ϕ, we get ϕ(a) ≤ ϕ((a + b)/2) ≤ (ϕ(a) + ϕ(b))/2 = ϕ(a) so that

the inequalities are in fact equalities. Since ϕ is strictly convex, we conclude that a = b.

This, in conjunction with 2.13, proves the first statement.

Let ϕ be the norm on E induced by the inner product: ϕ(a) =
√

(a, a). Then ϕ is

W -invariant (since W is generated by reflections, which are orthogonal transformations), ϕ

is convex (as is obviously any norm), and ϕ is strictly convex (by the parallelogram law).

Therefore, the second statement follows from the first and 2.13. ¤

3. Extension to Reductive Lie Groups

We begin this section with a discussion of those parts of the theory of reductive Lie

groups that will be needed to state and prove our results. The definition of “reductive Lie

group” varies from author to author. For us, a reductive Lie group will be a member of the

so-called Harish-Chandra class, which we now describe (see [Kn, p. 384]).

3.1 Definition. The Harish-Chandra class H consists of 4-tuples (G,K, θ, B), where G is

a Lie group, K is a compact subgroup of G, θ is a Lie algebra involution of the Lie algebra

g of G, and B is a nondegenerate, Ad(G)-invariant, symmetric, bilinear form on g such that

(1) g is reductive (meaning, g = g1+̇z, where g1 = [g, g] and z is the center of g),

(2) g = k+̇p (called the Cartan decomposition), where k = Lie K is the +1-eigenspace

and p is the −1-eigenspace under the action of θ,
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(3) k and p are orthogonal with respect to B, and B is negative definite on k and positive

definite on p,

(4) the map K × exp p → G given by multiplication is a surjective diffeomorphism,

(5) for every g ∈ G, the automorphism Ad(g) of g, extended to the complexification gC

of g is contained in Int gC, and

(6) the analytic subgroup G1 of G with Lie algebra g1 = [g, g] has finite center.

If (G,K, θ, B) ∈ H, then G is called a reductive Lie group.

Note that (5) is automatically satisfied if G is connected, for then Ad(G) = Int g ⊆ Int gC.

3.2 Example. Let G be a (connected) semisimple Lie group with finite center, let B be

the Killing form on g = LieG, let θ : g → g be a Lie algebra involution such that the form

Bθ(x, y) := −B(x, θ(y)) is positive definite (called a Cartan involution), let g = k+̇p be as in

3.1(2), and let K be the analytic subgroup of G with Lie algebra k. Then (G,K, θ,B) ∈ H
[Kn, p. 385].

3.3 Example. Let G be a closed linear group of real or complex matrices closed under

conjugate transpose inverse (X 7→ (X∗)−1), given as the common zero locus of some set of

real-valued polynomials in the real and imaginary parts of the matrix entries, and satisfying

3.1(5). Let θ be negative conjugate transpose (x 7→ −x∗), let K be the intersection of G

with the unitary group, and let B(x, y) = ReTr(xy). Then (G,K, θ, B) ∈ H [Kn, p. 385].

For the remainder of this section, we fix (G,K, θ,B) ∈ H and use the notation of 3.1.

Among the abelian subalgebras of g that are contained in p, choose a maximal one a

(referred to as a maximal abelian subspace of p). For α ∈ a∗ (= dual space of a), set

gα = {x ∈ g : [h, x] = α(h)x for all h ∈ a}.

If 0 6= α ∈ a∗ and gα 6= 0, then α is called a (restricted) root of the pair (g, a). The set of

roots will be denoted Σ. We have g = g0+̇
∑̇

α∈Σgα.

We view a as a Euclidean space by taking the inner product to be the restriction of B

to a. The map a∗ → a that assigns to each λ ∈ a∗ the unique element xλ of a satisfying

λ(x) = B(x, xλ) for all x ∈ a is a vector space isomorphism. We use this isomorphism
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to identify a∗ with a, allowing us, in particular, to view Σ as a subset of a. The set

Φ = {α ∈ Σ : 1
2α /∈ Σ} is a root system in a in the sense of §2, called the reduced root

system of the pair (g, a). Its associated finite reflection group W is called the Weyl group.

Clearly, W is generated by the reflections sα (α ∈ Σ). As in §2, fix a base ∆ for the root

system Φ. Then ∆ determines a fundamental domain a+(= E+ of §2) for the action of W

on a.

We now describe another way to view the Weyl group W . Use juxtaposition to represent

the adjoint action of G on g: gx = Ad(g)(x) (g ∈ G, x ∈ g). Set NK(a) = {k ∈ K : ka ⊆ a}
and ZK(a) = {k ∈ K : kx = x for all x ∈ a}. Then the action of K on g induces an action

of the group NK(a)/ZK(a) on a. There exists an isomorphism ψ : W → NK(a)/ZK(a)

that is compatible with the two actions on a, or more precisely, for which wx = ψ(w)x

(w ∈ W , x ∈ a) [Kn, 7.32]. We use the isomorphism ψ to identify these two groups. Note

in particular that, given x ∈ a, we have Wx = NK(a)x ⊆ Kx.

The following result is well known for the case of semisimple G. For the reader’s conve-

nience, we supply the short proof in our more general setting.

3.4 Lemma. If x ∈ p, then |Kx ∩ a+| = 1.

Proof. Let x ∈ p. Since p = Ka [Kn, 7.29], there exists some k ∈ K for which kx ∈ a.

Suppose also k′x ∈ a (k′ ∈ K) and write kx = a, k′x = a′ (a, a′ ∈ a). Exponentiating

the equation k−1a = x = k′−1
a′ gives k−1(exp a)k = k′−1(exp a′)k′ [Kn, 1.90]. According

to [Kn, 7.39] we then have exp a′ = n(exp a)n−1 = exp(na) for some n ∈ W . Since the

exponential map on a is injective [Kn, 1.104, 7.31], we conclude that a′ = na. Thus, we

have shown that Kx ∩ a = Wa. Hence, |Kx ∩ a+| = |Wa ∩ a+| = |{a}| = 1. ¤

Given x ∈ p, we denote the unique element of Kx ∩ a+ (which 3.4 guarantees) by x. If

x ∈ a, then the proof of 3.4 shows that x is the unique element of Wx∩a+, so this notation

is consistent with that in §2.

We will require two classical results from the theory of Lie groups–one due to Kostant

and the other due to Berezin and Gel’fand. These are both statements about semisimple

Lie groups and hence not general enough to be immediately applicable to our situation.

Therefore, we provide extensions to the case of a reductive Lie group. (See 3.6 and 3.9.)
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Let a⊥ denote the orthogonal complement in p of a and let π : p → a denote the

orthogonal projection of p onto a (where orthogonality is relative to the form B). As a

consequence of the next lemma, π is independent of the choice of B (provided, of course, B

satisfies 3.1).

3.5 Lemma. a⊥ = [k, a].

Proof. First, we remark that, since B is Ad(G)-invariant, it is ad(g)-invariant as well,

which means B([x, y], z) = −B(y, [x, z]) (x, y, z ∈ g). Indeed, for any t ∈ R we have

B(Ad(exp tx)(y), z) = B(y, Ad(exp tx)−1(z)) = B(y, Ad(exp(−tx))(z)), so differentiating

and putting t = 0 gives the indicated identity (see [Kn, p. 55]).

Let x ∈ k, y ∈ a. For any z ∈ a, we have B([x, y], z) = B(x, [y, z]) = B(x, 0) = 0, since a

is abelian. Since [x, y] ∈ p (3.1(2)), we have [x, y] ∈ a⊥. Thus, [k, a] ⊆ a⊥.

Let α ∈ Σ and let x ∈ gα. First, x + θx ∈ k (see 3.1(2)). Choose hα ∈ a with α(hα) 6= 0.

According to [Kn, 6.40(c)], θx ∈ g−α (the result is stated for semisimple g, but the proof is

valid for reductive g, as well), so yx,α := α(hα)x− α(hα)θx = [hα, x + θx] ∈ [k, a].

For each α ∈ Σ, let Bα be a basis for gα. The set {yx,α : α ∈ Σ+, x ∈ Bα} is clearly

linearly independent (where Σ+ is the set of those nonnegative linear combinations of ∆

that are contained in Σ). Hence, dim[k, a] ≥ ∑
α∈Σ+ dim gα.

On the other hand, the Iwasawa decomposition gives g = k+̇a+̇n, where n =
∑

α∈Σ+ gα,

from which it follows that dim a⊥ = dim n =
∑

α∈Σ+ dim gα. Therefore, [k, a] = a⊥, as

desired. ¤

The next result is commonly referred to as the “Convexity Theorem.”

3.6 Theorem (Kostant). If x ∈ p, then π(Kx) = C(Wx).

Proof. First assume G is semisimple. By 3.5, π is independent of the choice of B, so we

may assume B is the Killing form on g (3.3 and [Kn, p. 386]). In this case, the theorem is

the well-known result proved by Kostant in [Ko].

Now let G be arbitrary once again and let x ∈ p. Since Kx = Kx, we may assume x ∈ a.

The centralizer in K of a meets every connected component of K [Kn, 7.33], so denoting

this centralizer by M , we have K = K0M , where K0 is the connected component of K
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containing the identity element. Therefore, Kx = K0Mx = K0x.

Write k1, p1, a1 (resp., k0, p0, a0) for the intersections of k, p, a with g1 (resp., z) (notation

as in 3.1). Using [Kn, 7.19e, Example 1 on p. 385], we see that (G1, K1, θ1, B1) ∈ H, where

G1 is as in 3.1, K1 = exp(k1), and θ1 and B1 are the restrictions to g1 of θ and B,

respectively. The Cartan decomposition of g1 determined by θ1 is g1 = k1+̇p1 and a1 is a

maximal abelian subspace of p1 [Kn, p. 393]. We have k = k0+̇k1, p = p0+̇p1, a = a0+̇a1,

and a0 = p0 [Kn, 7.28]. By [Kn, 4.48], K0 = exp k = exp k1 exp k0. Since (exp k0)x = x [Kn,

1.93], we have K0x = K1x.

Now [k, a] = [k1, a1], and so it follows from 3.5 that, for any y = y0 + y1 ∈ p (yi ∈ pi), we

have π(y) = y0 + π1(y1), where π1 is the orthogonal projection of p1 onto a1 relative to B1.

Write x = x0 + x1 with xi ∈ ai. According to [Kn, p. 394], Wx = x0 + W1x1, where W1 is

the Weyl group associated with the reduced root system of the pair (g1, a1).

Assembling these results and using the special case of the theorem discussed in the first

paragraph, we obtain

π(Kx) = π(K1x) = π(x0 + K1x1) = x0 + π1(K1x1)

= x0 + C(W1x1) = C(x0 + W1x1) = C(Wx) = C(Wx),

as desired. ¤

Next, we generalize a theorem of Räıs [R] (which was rediscovered by Lewis [L, Theorem

4.3]).

3.7 Theorem (Räıs). A K-invariant function ϕ : p → R is convex if and only if its

restriction to a is convex.

Proof. The implication ( =⇒ ) is clear. Now let ϕ : p → R be a K-invariant function and

assume ϕ|a is convex. Let x, y ∈ p, 0 ≤ t ≤ 1, and set z = tx + (1 − t)y. Since ϕ is K-

invariant, we may assume that z ∈ a. We have ϕ(z) = ϕ(π(z)) = ϕ(tπ(x) + (1− t)π(x)) ≤
tϕ(π(x)) + (1 − t)ϕ(π(y)). Now x ∈ Kx, so 3.6 says π(x) ∈ C(Wx). Moreover, since ϕ is

K-invariant, ϕ|a is W -invariant, so 2.8 applies to give ϕ(π(x)) ≤ ϕ(x) = ϕ(x). Similarly,

ϕ(π(y)) ≤ ϕ(y). Hence ϕ(z) ≤ tϕ(x) + (1− t)ϕ(x), as desired. ¤
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From this theorem of Räıs, we easily obtain a result that generalizes a theorem of Li and

Tsing on unitary similarity invariant norms [L-T], as well as a theorem of von Neumann on

unitarily invariant norms [vN]. (See 4.1 and 4.3.)

3.8 Theorem. Let ϕ : p → R be a function. Then ϕ is a K-invariant norm if and only if

there exists a W -invariant norm ψ : a → R such that ϕ(x) = ψ(x) (x ∈ p).

Proof. First suppose ϕ is a K-invariant norm and set ψ = ϕ|a. Then ψ is clearly a W -

invariant norm and for any x ∈ p, ϕ(x) = ϕ(x) = ψ(x).

To prove the converse, suppose there exists a W -invariant norm ψ : a → R such that

ϕ(x) = ψ(x) (x ∈ p). Then ϕ is clearly K-invariant, so it remains to be shown that ϕ is a

norm. For any x ∈ p, we have ϕ(x) = ψ(x) ≥ 0 and ϕ(x) = 0 ⇐⇒ ψ(x) = 0 ⇐⇒ x =

0 ⇐⇒ x = 0. Next, let x ∈ p, 0 6= r ∈ R. Then rx = krx = rkx for some k ∈ K. Since

kx = r−1rx ∈ a, we have ϕ(rx) = ψ(rx) = ψ(rkx) = |r|ψ(kx) = |r|ψ(x) = |r|ϕ(x). Finally,

by 3.7, ϕ is convex, so (using the previous step) 1
2ϕ(x + y) = ϕ(1

2x + 1
2y) ≤ 1

2ϕ(x) + 1
2ϕ(y)

for any x, y ∈ p, and the triangle inequality follows. ¤

Now we generalize to the case of a reductive Lie group the other classical result we

require.

3.9 Theorem (Berezin-Gel’fand). If x, y ∈ p, then x + y ∈ x + C(Wy).

Proof. First assume G is semisimple. Then the theorem follows from [BGe, Theorem 3, p.

235]. Indeed, that theorem says x + y = (1, x + y) = (1, x)(1, y) ∈ C(x+Wy) = x+C(Wy)

(x, y ∈ p), where the pairs are viewed as elements of G̃ = K×p, and p is viewed as a subset

of G̃ via the injection x 7→ (1, x) (x ∈ p).

Now assume G is arbitrary once again and let the notation be as in the proof of 3.6.

We will make a series of observations that will allow us to easily reduce to the special case

above. First note that for any x, y ∈ g and z ∈ z, the ad(g)-invariance of B (see proof of

3.5) gives

B([x, y], z) = B(x, [y, z]) = B(x, 0) = 0,

so that g1 is orthogonal to z relative to B. Hence, a = a0+̇a1 is an orthogonal direct sum.
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Next, it is easy to see that any root of the pair (g, a) is zero on a0 and that restriction to a1

maps Φ bijectively onto the reduced root system Φ1 of the pair (g1, a1) [Kn, p. 393]. Recall

that we identify a∗ with a by mapping λ ∈ a∗ to the unique xλ ∈ a for which λ = B(xλ, ·),
and hence view Φ as a subset of a. For any α ∈ Φ, x ∈ a0, we have B(xα, x) = α(x) = 0,

implying Φ is contained in the orthogonal complement in a of a0, which is a1 according to

the previous paragraph. An easily seen consequence of this is that Φ is precisely the copy

of Φ1 in a1 (the copy being given by the identification a∗1 → a1 induced by B1).

The Weyl group W fixes a0 elementwise (since Φ is orthogonal to a0), and restriction to

a1 defines an isomorphism W → W1 where W1 is the Weyl group associated with Φ1. We

clearly have a+ = a0 + a+
1 , where a+

1 is the fundamental domain for the action of W1 on a1

corresponding to the base ∆1 := ∆ of Φ1.

Let z ∈ p. By [Kn, 7.29], z ∈ K1a. Using this, together with the remarks above about

the Weyl groups, we find that z = kz = z0 + kz1 for some k ∈ K1. Hence kz1 = z − z0 ∈
a+ ∩ p1 = a+

1 , implying kz1 = z1, where z1 is the representative in a+
1 of the K1-orbit of z1.

We conclude that z = z0 + z1.

Now we can finish the proof by using the special case of the first paragraph. For any

x, y ∈ p, we have x + y = x0 +y0 +x1 + y1 ∈ x0 +y0 +x1 +C(W1y1) = x+C(y0 +W1y1) =

x + C(W (y0 + y1)) = x + C(Wy). ¤

The second part of the following corollary was proved in [T] for the case of semisimple

G.

3.10 Corollary. Let x, y ∈ p.

(1) x− y ≺ x− y.

(2) x + y ≺ x + y.

Proof. (1) Using 3.9, we have x = y + (x− y) ∈ y + C(Wx− y). Therefore, x − y ∈
C(Wx− y) and the result follows from 2.8.

(2) Using 2.7 and then (1), we obtain x + y − y ≺ x + y − y ≺ x. The inequality

follows. ¤

Remark. The inequalities in the corollary can be viewed as generalizations of the classical
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triangle inequalities of real analysis:
∣∣|x| − |y|∣∣ ≤ |x− y| and |x + y| ≤ |x|+ |y| (x, y ∈ R).

Indeed, if G = SL(2,C), K = SU(2), θ : x 7→ −x∗, B = Killing form, a = {
[

r 0
0 −r

]
:

r ∈ R}, then Φ is irreducible of type A1 in a, which identifies with R. The Weyl group

consists of the identity map and negation, so if we choose a+ = R+, then x = |x| and also

x ≺ y ⇐⇒ x ≤ y (x, y ∈ a). Thus, for any x, y ∈ a ⊆ p, we can apply the corollary to

obtain the triangle inequalities.

We will require the following easy corollary of 3.6. Given X ⊆ p, we denote by X the

set {x : x ∈ X}.

3.11 Corollary. If x ∈ a, then

C(Kx) = C(Kx) ∩ a+ = C(Wx) ∩ a+ = C(Wx).

Proof. Let x ∈ a. We have

C(Kx) ⊆ C(Kx) ∩ a+ (using the K-stability of C(Kx))

⊆ π(C(Kx)) ∩ a+ (since π fixes a pointwise)

= C(π(Kx)) ∩ a+ (since π is linear)

= C(Wx) ∩ a+ (by 3.6)

⊆ C(Wx)

⊆ C(Kx) (since Wx ⊆ Kx).

Since the first and last expressions are the same, the containments must be equalities. ¤

We are now in a position to prove an analog of 2.13 in our reductive Lie group setting.

In the statement of the theorem, yx has the same meaning as in §2 (definition before 2.9)

with E = a, E+ = a+, and so forth, and w0 is the longest element of the Weyl group W .

(See also the comments before the statement of 2.13.)

3.12 Theorem. Let x, y ∈ p, write x = kx with k ∈ K, and let ϕ : p → R be a convex

K-invariant function.

(1) The set {ϕ(x− z) : z ∈ C(Ky)} has minimum ϕ(x− yx); this minimum is attained

when z = kyx.
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(2) The set {ϕ(x−z) : z ∈ C(Ky)} has maximum ϕ(x−w0y); this maximum is attained

when z = kw0y.

Proof. As in the proof of 2.13, we may assume x, y ∈ a+ (so that x = x, y = y, and k = 1).

We have

min{ϕ(x− z) : z ∈ C(Ky)} = min{ϕ(x− z) : z ∈ C(Ky)} (using K-invariance of ϕ)

≥ min{ϕ(x− z) : z ∈ C(Ky)} (3.10(1) and 2.8)

= min{ϕ(x− z) : z ∈ C(Ky)} (straightforward)

≥ min{ϕ(x− z) : z ∈ C(Wy)} (3.11).

Similarly, we have

max{ϕ(x− z) : z ∈ C(Ky)} = max{ϕ(x− z) : z ∈ C(Ky)}

≤ max{ϕ(x +−z) : z ∈ C(Ky)} (3.10(2) and 2.8)

= max{ϕ(x + z) : z ∈ −C(Ky)}

≤ max{ϕ(x− z) : z ∈ C(Wy)}.

On the other hand, {ϕ(x− z) : z ∈ C(Ky)} ⊇ {ϕ(x− z) : z ∈ C(Wy)} (since Ky ⊇ Wy),

so the inequalities above are in fact equalities. The theorem now follows from 2.13. ¤

3.13 Corollary. Let x, y ∈ p and write x = kx with k ∈ K. If ϕ : p → R is a strictly

convex K-invariant function, then kyx is the unique element of C(Ky) for which

ϕ(x− kyx) = min{ϕ(x− z) : z ∈ C(Ky)}.

In particular, kyx is the unique element of C(Ky) for which the above equation holds for

every convex K-invariant function ϕ : p → R.

Proof. The proof of the first statement is the same as that for the corresponding statement

in 2.14. The norm ϕ on p induced by the inner product B is K-invariant by the Ad(G)-

invariance of B, so the second statement also follows as before. ¤

Finally, we apply some of our results to a useful special case. Let U be a compact

connected Lie group with Lie algebra u. We can view U as a subgroup of some unitary
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group U(n) < GL(n,C) by the Peter-Weyl theorem, and in turn view u as a subalgebra of

gl(n,C). Let uC = u+̇iu (i =
√−1) be the complexification of u and let UC be the analytic

subgroup of GL(n,C) with Lie algebra uC. Define θ : uC → uC by x+ iy 7→ x− iy (x, y ∈ u).

Let B be the Killing form on u extended to uC by setting B(x+iy, u+iv) = B(x, u)−B(y, v).

Then (UC, U, θ, B) ∈ H [Kn, p. 404, Examples 1 and 3 on p. 385, Remark on p. 380]. The

corresponding Cartan decomposition of uC is uC = k+̇p, where k = u and p = iu. If t is a

maximal abelian subalgebra of u, then a = it is a maximal abelian subspace of p. Clearly, u

and p are isomorphic as modules for K = U . The following result can now be easily verified.

3.14 Corollary. The statements 3.7, 3.8, 3.12, and 3.13 remain valid if K, p, a are replaced

by U, u, t, respectively. ¤

The version of 3.7 given in the corollary was proved by Atiyah and Bott in [AB, Propo-

sition 12.16].

4. Examples

In this final section, we show how our general results can be used to obtain results of Li

and Tsing [LT2] and results of Cheng [C] that involve a set M of matrices, an equivalence

relation ∼ on M, and a ∼-invariant norm ‖·‖ on M. For various choices of M and ∼, these

authors solved the problem of finding, for fixed X,Y ∈M, the extreme values of ‖X−Z‖ as

Z ranges through the convex hull of the equivalence class of Y . Here we take their choices

for M and ∼ one at a time and show that in each case, there exists (G,K, θ,B) ∈ H such

that (in the notation of 3.1) M = p and ∼ is given by congruence under the adjoint action

of K. (Actually, in 4.4 we need to use a group slightly larger than K in order to obtain the

stated equivalence relation, and in the last example, 4.6, we use instead the adjoint action

of a compact Lie group on its Lie algebra (which plays the role of M) as in 3.14). Since ‖ · ‖
is convex and K-invariant, our main result, 3.12, then applies to give the aforementioned

extreme values. We show that our findings are in agreement with those in the literature.

Besides the one on extreme values, there are other results in the papers of Li and Tsing

and by Cheng that can be recovered by using our general results. We discuss a few of

these in the first example and leave to the interested reader the similar verifications in the
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remaining examples.

For each example (save the last), we specify G and K, and take θ to be negative conjugate

transpose and B(x, y) = c ReTr(xy) (c, an appropriate real constant) appealing to 3.3 for

justification that (G,K, θ,B) is in H. The adjoint action of K on p in each case is given by

Ad(k)(x) = kxk−1 (k ∈ K, x ∈ p).

4.1 Example. M is the set of n × n Hermitian matrices and ∼ is unitary similarity:

X ∼ Y if and only if X = UY U∗ for some U ∈ U(n) (cf. [LT2], [C, type (I), p. 170]).

Let G = GL(n,C) and K = U(n). We have g = gl(n,C), k = u(n) (= algebra of skew

Hermitian matrices), and p = set of n × n Hermitian matrices. We may take as maximal

abelian subspace a of p the set of n × n real diagonal matrices, which we identify in the

obvious way with Rn = {x = (x1, . . . , xn) : xi ∈ R}. Let B be given by B(x, y) = Re Tr(xy).

Then restriction of B to a yields the standard inner product: B(x, y) =
∑

i xiyi (x, y ∈ a).

The (reduced) root system Φ of the pair (g, a) is irreducible of type An−1. Viewed as a

subset of a, as usual, Φ spans {x ∈ a :
∑

i xi = 0}, which has as orthogonal complement

the line {(c, . . . , c) : c ∈ R}. For a base ∆ of Φ, we may take the set {α1, . . . , αn−1}, where

αi = ei− ei+1 ({e1, . . . , en} being the standard basis of Rn). The Weyl group W associated

with Φ identifies with the symmetric group Σn on {1, . . . , n} via σx = (xσ(1), . . . , xσ(n)) (σ

in W on the left and in Σn on the right, x ∈ a). The fundamental domain for the action of

W on a determined by ∆ is a+ = {x ∈ a : x1 ≥ · · · ≥ xn}.

First, we apply 3.8 in this setting to recover Theorem 4.1 of Li and Tsing in [LT1]. Let

Hn denote the set of n × n Hermitian matrices. A norm ‖ · ‖ on Hn is unitary similarity

invariant (u.s.i.) if ‖UAU−1‖ = ‖A‖ for all A ∈ Hn, U ∈ U(n). A function Φ : Rn → R

is Schur convex if Φ(x) ≤ Φ(y) whenever x ∈ C(Σny), where the action of Σn on Rn is as

described above. Li and Tsing’s result states that, for every u.s.i. norm ‖ · ‖ on Hn, there

exists a Schur convex norm Φ on Rn such that ‖A‖ = Φ(λ(A)) for each A ∈ Hn, where

λ(A) is the n-tuple of eigenvalues of H arranged in nonincreasing order. In the notation of

this example, we have p = Hn, and a u.s.i. norm on p is the same as a K-invariant norm.

By 2.8, a W -invariant norm on Rn is a Schur convex norm. Therefore, Li and Tsing’s result

follows from 3.8 after we note that λ(A) = A (A ∈ Hn).
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Next, using the fact that the longest element w0 of the Weyl group sends αi to −αn−i

and fixes (1, . . . , 1), one easily checks that w0x = (xn, . . . , x1) (x ∈ a). Therefore, Theorem

1 in [LT2] follows from 3.12 above.

Now we consider Theorem 3 of [LT2]. Our aim is to show that, for suitable choices of the

sets Ik, our algorithm (2.4) coincides with that of Li and Tsing. Let x ∈ a (corresponding to

an arbitrary choice of ∆ ∈ Rn in their Step 1). To avoid confusion with coordinate notation,

we denote the element of a obtained in the rth step of our algorithm by x(r) instead of xr.

First, observe that our algorithm ends with x(r) if and only if x
(r)
k −x

(r)
k−1 = (x(r), αk) ≥ 0

for all k, the same as in Li and Tsing’s algorithm. Suppose our algorithm does not end with

x(r−1). Then x
(r−1)
k−1 − x

(r−1)
k = (x(r−1), αk−1) < 0 for some k > 1. Let 1 ≤ j < k ≤ ` ≤ n

be such that

x
(r−1)
j−1 6= x

(r−1)
j = · · · = x

(r−1)
k−1 < x

(r−1)
k = · · · = x

(r−1)
` 6= x

(r−1)
`+1 ,

where the first (resp., last) member is ignored if j = 1 (resp., ` = n).

Set Ir = Ir−1 ∪ J , where J = {j, . . . , ` − 1}. We need to show that Ir satisfies the two

conditions of the algorithm 2.4. If b ∈ M := Ir\J , then b ∈ Ir−1, so (x(r−1), αb) = 0 by

2.3(1), implying b 6= j−1, `. It follows that (αi, αb) = 0 for i ∈ J , b ∈ M . Since Ir = J ∪M

(disjoint union), we get dIr

bi = 0 if (b, i) /∈ (M ×M) ∪ (J × J). Therefore,

cIr
i (x(r−1)) =

∑

b∈Ir

dIr

bi 〈x(r−1), αb〉 =
∑

b∈J

dIr

bi 〈x(r−1), αb〉 = dJ
k−1,i〈x(r−1), αk−1〉,

which, according to 2.1 and the choice of k, is nonpositive for every i and negative for

i ∈ Ir\Ir−1 (since then i, k − 1 ∈ J ∈ L). This shows that the two conditions are satisfied.

From the preceding paragraph, we get

x(r) = x(r−1) − x(r−1)(Ir) = x(r−1) −
∑

a∈J

dJ
k−1,a〈x(r−1), αk−1〉αa.

If i < j or i > `, then (αa, ei) = 0 for all a ∈ J , implying x
(r)
i = (x(r), ei) = (x(r−1), ei) =

x
(r−1)
i . Next, {αa : a ∈ J} is a base for a root system isomorphic to the irreducible root

system of type A`−j . By consulting [H1, p. 69], we find that dJ
k−1,`−1 = (k− j)/(`− j + 1).
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Therefore,

x
(r)
` = (x(r), e`) = x

(r−1)
` + dJ

k−1,`−1〈x(r−1), αk−1〉 = x
(r−1)
` +

k − j

`− j + 1
(x(r−1)

k−1 − x
(r−1)
k )

=
1

`− j + 1
[
(k − j)x(r−1)

k−1 + (`− k + 1)x(r−1)
k

]
=

1
`− j + 1

∑̀

b=j

x
(r−1)
b ,

where we have used that x
(r−1)
b = x

(r−1)
k−1 for j ≤ b < k, and x

(r−1)
b = x

(r−1)
k for k ≤ b ≤ `.

Now, if j ≤ i < `, then x
(r)
i − x

(r)
i+1 = (x(r), αi) = 0 (2.3(1)), that is, x

(r)
i = x

(r)
i+1. Putting

this together with the last computation, we get x
(r)
i = 1

`−j+1

∑`
b=j x

(r−1)
b for j ≤ i ≤ `.

We showed earlier that x
(r)
i = x

(r−1)
i for i < j or i > `, so this finishes the proof that our

algorithm coincides with that of Li and Tsing.

The reader should now have no difficulty in verifying that Theorem 3 of [LT2] follows

from 3.12(1) above. (Setting x = A and y = B, we have x = λ(A), k = U , kyx = Bm. Note

that the algorithm applied to x− y terminates with (x− y)+ = x− yx according to 2.6.)

Next, we show how Theorem 2 in [LT2] can be proved using 2.9 above. For this, we need

the following observation.

Let u ∈ a+, v ∈ a and assume v Â 0. Then (u, v) = 0 if and only if there does not exist

1 ≤ k < n such that
∑k

i=1 vi > 0 and uk > uk+1.

Proof. Since v Â 0, we have v =
∑n−1

k=1 akαk =
∑n−1

k=1 ak(ek − ek+1) with ak ≥ 0. Hence,

for 1 ≤ i ≤ n, we have vi = (ai − ai−1) (defining a0 = 0, an = 0). Thus,
∑k

i=1 vi =
∑k

i=1(ai − ai−1) = ak ≥ 0 (1 ≤ k ≤ n). Also, since u ∈ a+, we have uk − uk+1 ≥ 0

(1 ≤ k < n). Now (u, v) =
∑

i uivi =
∑n−1

k=1

[
(uk − uk+1)(

∑k
i=1 vi)

]
, where the second

equality uses the fact that
∑n

i=1 vi = an = 0. Therefore, the claim follows.

We now claim that 2.9 implies the following statement.

If x, y ∈ a+ and z ∈ p, then z = yx if and only if

(1) z ∈ C(Ky) ∩ a+,

(2) xk − zk ≥ xk+1 − zk+1 (1 ≤ k < n), and

(3) there does not exist 1 ≤ k < n such that
∑k

i=1 yi >
∑k

i=1 zi and xk − zk > xk+1 −
zk+1.

Proof. We intend to apply 2.9 with E = a, E+ = a+, etc., as in the discussion before

3.4. First, 3.11 says C(Ky) ∩ a+ = C(Wy) ∩ a+, so (1) agrees with 2.9(1). Next, we have
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already observed that u ∈ a+ if and only if uk ≥ uk+1 (1 ≤ k < n), so (2) agrees with

2.9(2). Finally, assuming (1) and (2), we have z ≺ y (2.8) and x− z ∈ a+, so the previous

statement applies with v = y − z and u = x− z to finish the proof.

Now, with the aid of 3.13 concerning uniqueness in the case of a strictly convex function

(which ‖ · ‖2 is), it is not hard to see that the above statement is equivalent to Theorem 2

in [LT2] (with x = A, y = B, z = B′, yx = B̂.) (Actually, we get only the special case of

that theorem with U = I, but the general case follows immediately.)

Finally, we indicate how the key Lemma 1 of [LT2] follows from our results. First, the

set Rn
↓ is the same as our a+. Next, Li and Tsing write x ≺ y (x, y ∈ Rn) to mean that x

is “majorized” by y. It is well known [MO] that this is equivalent to saying x ∈ C(Σny) =

C(Wy). Now ∆ in the lemma is the terminal element of the algorithm applied to x − y,

which is (x−y)+ = x−yx (2.6), whence y′ = yx. Therefore, parts (a) and (b) of the lemma

follow from 2.9(1), part (c) from 2.9(2), and part (d) from 2.10.

4.2 Example. M is the set of symmetric n × n matrices over R and ∼ is orthogonal

similarity: X ∼ Y if and only if X = OY Ot for some O ∈ O(n) (cf. [C, type (II), p. 170]).

Let G = GL(n,R) and K = O(n). We have g = gl(n,R), k = so(n) (= algebra of n× n

skew symmetric matrices over R), and p = set of symmetric n × n matrices over R. The

discussion in 4.1 now carries over verbatim to this setting. (Cheng already pointed out in

[C] that the results in [LT2] are valid for the M and ∼ of this example.)

4.3 Example. M is the set Cm×n of m×n matrices over C and ∼ is unitary equivalence:

X ∼ Y if and only if X = UY V for some U ∈ U(m), V ∈ U(n) (cf. [C, type (III), F = C,

p. 171]).

Let G = U(m,n) = {g ∈ GL(m + n,C) : g∗Im,ng = Im,n}, where Im,n =
[

Im 0
0 −In

]

(It = t × t identity matrix). Let K = {
[

U 0
0 V

]
: U ∈ U(m), V ∈ U(n)}. (Since the

unitary group is connected, so is K, and hence so is G by [Kn, 1.122]. Therefore 3.1(5)

is satisfied.) We have g = u(m,n) = {
[

a b
b∗ d

]
: a ∈ u(m), d ∈ u(n), b ∈ Cm×n}, k

consists of those matrices in g with b = 0 and p those with a = 0 = d (see [Kn, p. 314]).

We identify p with Cm×n via
[

0 b
b∗ 0

]
7→ b. With this identification, the adjoint action
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of k =
[

U 0
0 V

]
∈ K on b becomes Ad(k)(b) = UbV ∗, so the corresponding equivalence

relation is unitary equivalence, as desired.

For the remainder of the discussion, we assume m ≥ n (the other case being similar).

We may take a = {x =
∑n

i=1 xieii : ai ∈ R} ⊆ Cm×n which we identify with Rn via

x 7→ (x1, . . . , xn). Let B be given by B(x, y) = 1
2 Re Tr(xy). Then restriction of B to a

yields the standard inner product on Rn. The reduced root system Φ of the pair (g, a) is

the irreducible root system of type Bn if m > n and of type Cn if m = n. We may take

∆ = {α1, . . . , αn}, where αi = ei−ei+1 (1 ≤ i < n) and αn is en or 2en according as m > n

or m = n. Then a+ = {x ∈ a : x1 ≥ · · · ≥ xn ≥ 0}.

The Weyl group W associated with Φ consists of all mappings a → a of the form x 7→
(ε1xσ(1), . . . , εnxσ(n)), with εi = ±1 and σ ∈ Σn, so the symmetric gauge function ϕ : a → R

referred to by Cheng is W -invariant (and convex since it is a norm).

Arguing as in 4.1, we see from 3.8 that a function ‖ · ‖ : Cm×n → R is a norm and is

constant on equivalence classes relative to ∼ (a so-called unitarily invariant norm) if and

only if there exists a symmetric gauge function Φ on Rn such that ‖X‖ = Φ(s(X)) for all

X ∈ Cm×n, where s(X) is the n-tuple of singular values of X arranged in nonincreasing

order. This is a theorem of von Neumann [vN].

The longest element w0 of the Weyl group is negation, so Theorem 2(a) (F = C) of [C]

follows from 3.12(2). The other results of [C] in the setting of this example that are analogs

of the results of Li and Tsing discussed in 4.1 are obtained similarly. We comment only on

the algorithm in the case m > n (the case m = n being similar).

Since the vectors α1, . . . , αn−1 are the same as those in 4.1, we can apply the algorithm

just as in that example to produce from x ∈ a the vector x(r) with x
(r)
1 ≥ · · · ≥ x

(r)
n . This

corresponds to repeating Step 3 of Theorem 1 in [C] up to the point where the algorithm

passes to Step 4.

If x
(r)
n = (x(r), αn) ≥ 0, then our algorithm stops, as does Cheng’s. Assume otherwise

and let k be the least index for which x
(r)
k < 0. Let J = {k, . . . , n} and set Ir+1 = Ir ∪ J .
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Arguing as in 4.1, we get for any i ∈ Ir+1,

c
Ir+1
i (x(r)) =

∑

j∈Ir+1

d
Ir+1
ji 〈x(r), αj〉 =

∑

j∈J

d
Ir+1
ji 〈x(r), αj〉,

and if i ∈ Ir+1\J , then d
Ir+1
ji = 0 for all j ∈ J . If i ∈ J , then

d
Ir+1
ji = dJ

ji =





i− k + 1, j < n, j ≥ i

j − k + 1, j < n, j < i

(i− k + 1)/2, j = n

[H, p. 69], and a straightforward computation gives c
Ir+1
i (x(r)) =

∑i
j=k xj < 0. Therefore,

conditions (1) and (2) of the algorithm 2.4 are met. The terminal element of the algorithm is

x(r+1); it satisfies x
(r+1)
i = (x(r+1), ei) = (x(r), ei) = x

(r)
i for all i /∈ J , while x

(r+1)
i −x

(r+1)
i+1 =

(x(r+1), αi) = 0 (k ≤ i < n) and x
(r+1)
n = (x(r+1), αn) = 0, implying x

(r+1)
k = x

(r+1)
k+1 =

· · · = x
(r+1)
n = 0 just as in Step 4 of Cheng’s algorithm. This shows, in light of our earlier

remarks, that Theorem 1 of [C] is a special case of 2.13.

4.4 Example. M is the set Rm×n of m× n matrices over R and ∼ is orthogonal equiva-

lence: X ∼ Y if and only if X = UY V for some U ∈ O(m), V ∈ O(n) (cf. [C, type (III),

F = R, p. 171]).

It would be nice just to let G = O(m,n) = {g ∈ GL(m + n,R) : gtIm,ng = Im,n} and

proceed in a manner analogous to 4.3. Unfortunately though, O(m,n) does not always

satisfy 3.1(5) (for instance, when m = n). Therefore, we instead let G = SO(m,n)◦ (=

identity component of the group SO(m,n) of those elements of O(m,n) having determinant

1). Set K = {
[

U 0
0 V

]
: U ∈ SO(m), V ∈ SO(n)}. Then g, k, p, and a are the intersections

with gl(m+n,R) of the corresponding spaces in 4.3. Assume m ≥ n (the case m ≤ n being

similar). If m > n, then the reduced root system Φ of the pair (g, a) is Φ = {±ei ± ej :

i 6= j} ∪ {±ei} (signs read independently here and below), which is of type Bn, and taking

∆ = {ei − ei+1 (1 ≤ i < n), en} we have a+ = {x ∈ a : x1 ≥ · · · ≥ xn ≥ 0}. If m = n, then

Φ = {±ei±ej : i 6= j}, which is of type Dn, and taking ∆ = {ei−ei+1 (1 ≤ i < n), en−1+en},
we have a+ = {x ∈ a : x1 ≥ · · · ≥ xn−1 ≥ |xn|}.

Let K ′ = {
[

U 0
0 V

]
: U ∈ O(m), V ∈ O(n)}. Then K ′ = KD, where D is the

set of diagonal matrices with diagonal entries ±1. Let K ′ act on p by conjugation, thus
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extending the action of K. Under this action, D stabilizes a and identifies with the group

of reflections in a of the form x 7→ (ε1x1, . . . , εnxn) (εi = ±1). Clearly, the group W ′

generated by W and D is the finite reflection group associated with the root system Φ′ =

{±ei ± ej : i 6= j} ∪ {±ei} which is of type Bn. The set ∆′ = {ei − ei+1 (1 ≤ i < n), en}
is a base for Φ′ and the corresponding fundamental domain for the action of W ′ on a is

a+′ = {x ∈ a : x1 ≥ · · · ≥ xn ≥ 0}.
Given x ∈ p, it is easy to see that the orbit K ′x intersects a+′ in a unique element, which

we write as x′. From 2.7, we have x ≺′ x′ (x ∈ a), where ≺′ is the partial order on a induced

by ∆′.

We claim that 3.12 is valid with K, x, y, w0 replaced by K ′, x′, y′, w′0 (= longest element

of W ′), and with y′x′ computed relative to ∆′. Indeed, assuming x, y ∈ a+′, we have, as in

the proof of 3.12,

min{ϕ(x− z) : z ∈ C(K ′y)} = min{ϕ(x− z) : z ∈ C(K ′y)}

≥ min{ϕ(x− z′) : z ∈ C(K ′y)}

= min{ϕ(x− z) : z ∈ C(K ′y)
′},

where the arguments are as before except with the additional observation that ϕ(x− z′) ≤
ϕ(x− z) since x− z′ ≺′ x− z (see 2.8). Now using 3.6, we obtain

π(K ′y) = π(
⋃

d∈D

Kdy) =
⋃

d∈D

π(Kdy) ⊆
⋃

d∈D

C(Wdy) ⊆ C(W ′y),

so the argument in the proof of 3.11 applies to give C(K ′y)
′ ⊆ C(W ′y). Therefore,

min{ϕ(x − z) : z ∈ C(K ′y)
′} ≥ min{ϕ(x − z) : z ∈ C(W ′y)} and the rest of the proof

can be completed as before. The statement involving the maximum is proved similarly.

Since the root system Φ′ is of type Bn, the argument in 4.3 applies to show that Cheng’s

algorithm is the same as ours. The other main results of Cheng in this case also follow from

ours.

4.5 Example. M is the set of symmetric n × n matrices over C and ∼ is unitary con-

gruence: X ∼ Y if and only if X = UY U t for some U ∈ U(n) (cf. [C, type (IV), p.

171]).
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Let G = Sp(n,R) = {g ∈ SL(2n,R) : gtJn,ng = Jn,n}, where Jn,n =
[

0 In

−In 0

]
, and let

K = {
[

a b
−b a

]
: a, b ∈ Rn×n, a+ib ∈ U(n)}. We have g = {

[
a b
c −at

]
: a, b, c ∈ Rn×n, bt =

b, ct = c}, k = {
[

a b
−b a

]
∈ g : at = −a, bt = b}, and p = {

[
a b
b −a

]
∈ g : at = a, bt = b}.

The map
[

a b
−b a

]
7→ a + ib identifies K with U(n) and p with the set of symmetric n× n

matrices over C, and with these identifications, congruence in p under the adjoint action

of K is precisely unitary congruence. For a, we can take {diag(x1, . . . , xn,−x1, . . . ,−xn)},
which identifies with Rn in the obvious way. The reduced root system Φ of the pair (g, a)

is of type Cn. Therefore, an argument very similar to that given in 4.3 for the case of the

root system Bn shows that Cheng’s algorithm for this example and ours coincide.

4.6 Example. M is the set of n × n skew symmetric matrices over C and ∼ is unitary

congruence (cf. [C, type (V), F = C, p. 171]).

Let G = SO∗(2n) = {g ∈ SU(n, n) : gtLn,ng = Ln,n}, where Ln,n =
[

0 In

In 0

]
,

and K = {
[

U 0
0 U

]
: U ∈ U(n)}. We have g = {

[
a b
−b a

]
: at = −a, bt = −b}, k

consists of those matrices in g with b = 0, and p those with a = 0 (see [Kn, p. 367]).

Identifying K with U(n) via
[

U 0
0 U

]
7→ U , and p with the set of n × n skew symmetric

matrices via
[

0 b
−b 0

]
7→ b, we see that congruence in p under the adjoint action of K

is precisely unitary congruence. For a, we may take all matrices
[

0 b
−b 0

]
with b of the

form
∑[n/2]

i=1 xi(e2i−1,2i − e2i,2i−1) (xi ∈ R), which we identify with R[n/2] by sending the

indicated matrix to (x1, . . . , x[n/2]). Here we take B(x, y) = 1
4 ReTr(xy), so that restriction

of B to a yields the standard inner product on R[n/2]. Then the reduced root system Φ of

the pair (g, a) is of type Cn/2 if n is even and of type B(n−1)/2 if n is odd. Therefore, the

comparison of Cheng’s algorithm with ours given in 4.3 applies here as well.

4.7 Example. M is the set of n×n skew symmetric matrices over R and ∼ is orthogonal

similarity (cf. [C, type(V), F = R, p. 171]).

For this last example, we will use the version of 3.12 given in 3.14 (with a minor ad-

justment). Let U = SO(n)◦. Then u = so(n), which is the set of n × n skew symmetric

matrices over R. Note that congruence in u under the adjoint action of U is orthogonal
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similarity. We may take t = {∑[n/2]
i=1 xi(e2i−1,2i − e2i,2i−1) : xi ∈ R} identified with R[n/2]

by sending the indicated matrix to (x1, . . . , x[n/2]). If n is odd, then the reduced root

system Φ of the pair (u, t) is Φ = {±ei ± ej : i 6= j} ∪ {±ei} (signs read independently

here and below), which is of type Bn, and taking ∆ = {ei − ei+1 (1 ≤ i < n), en} we

have t+ = {x ∈ t : x1 ≥ · · · ≥ xn ≥ 0}. If n is even, then Φ = {±ei ± ej : i 6= j},
which is of type Dn, and taking ∆ = {ei − ei+1 (1 ≤ i < n), en−1 + en}, we have

t+ = {x ∈ t : x1 ≥ · · · ≥ xn−1 ≥ |xn|}.

Let U ′ = O(n). Then U ′ = UD, where D is the set of diagonal matrices with diagonal

entries ±1. Now D stabilizes t, so it makes sense to form the group W ′ generated by W

and D. W ′ is a finite reflection group associated with the root system Φ′ = {±ei ± ej : i 6=
j} ∪ {±ei} which is of type Bn. The set ∆′ = {ei − ei+1 (1 ≤ i < n), en} is a base for Φ′

and the corresponding fundamental domain for the action of W ′ on t is t+
′ = {x ∈ t : x1 ≥

· · · ≥ xn ≥ 0}. Given x ∈ u, denote by x′ the unique element of t+
′ ∩ U ′x. Arguing as in

4.4, we see that the version of 3.12 given in 3.14 is valid with all notation replaced by the

corresponding primed notation. Therefore, Cheng’s results follow from ours just as in the

earlier examples.

Remark. Our reason for considering the group K ′ in 4.4 and the group U ′ in 4.7 was

that we were interested in recovering Cheng’s results. Of course, we get new results by

considering the actions of just K and U . For instance, in 4.4 we see that if M is the set

Rm×n of m×n matrices over R and ∼ is special orthogonal equivalence (X ∼ Y if and only

if X = UY V for some U ∈ SO(m), V ∈ SO(n)), then the results of Cheng apply unchanged

to this setting if m 6= n (for then Φ is of type B`, where ` = min{m,n}), while new formulas

are required if m = n (for then Φ is of type Dn). In the latter case, the longest element

w0 of the Weyl group W acts on a by the rule w0x = (−x1, . . . ,−xn−1, (−1)n+1xn), so the

statement about the maximum in Cheng’s Theorem 2(a) (F = R) changes slightly in this

setting if n is odd. Also, if m = n, then Cheng’s algorithm in Theorem 1 must be changed

to handle this setting. It is not too difficult to see that by making appropriate choices for

the sets Ik in our algorithm 2.4, one can produce an algorithm that bears some resemblance

to Cheng’s, but we feel that to include such an algorithm here would serve no real purpose
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since, for instance, the algorithm arising from the natural choices given after 2.4 would be

easier to implement on a computer (and, once implemented, would require only a change

of Cartan matrix to be applicable to settings with other root systems).
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